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Sleep is a vital need, forcing us to spend a large portion of our 
life unable to interact with the external world. Current mod-
els interpret such extreme vulnerability as the price to pay 
for optimal learning. Sleep would limit external interferences 
on memory consolidation1–3 and allow neural systems to reset 
through synaptic downscaling4. Yet, the sleeping brain contin-
ues generating neural responses to external events5,6, reveal-
ing the preservation of cognitive processes ranging from the 
recognition of familiar stimuli to the formation of new memory 
representations7–15. Why would sleepers continue process-
ing external events and yet remain unresponsive? Here we 
hypothesized that sleepers enter a ‘standby mode’ in which 
they continue tracking relevant signals, finely balancing the 
need to stay inward for memory consolidation with the ability 
to rapidly awake when necessary. Using electroencephalogra-
phy to reconstruct competing streams in a multitalker envi-
ronment16, we demonstrate that the sleeping brain amplifies 
meaningful speech compared to irrelevant signals. However, 
the amplification of relevant stimuli was transient and van-
ished during deep sleep. The effect of sleep depth could be 
traced back to specific oscillations, with K-complexes promot-
ing relevant information in light sleep, whereas slow waves 
actively suppress relevant signals in deep sleep. Thus, the 
selection of relevant stimuli continues to operate during sleep 
but is strongly modulated by specific brain rhythms.

Sleepers are not completely isolated from their environment. 
Indeed, previous studies have shown that awakening can be facili-
tated not only by low-level factors (for example, high-amplitude 
sounds)7 but also by semantic relevance (for example, some-
one hearing their own name or the cries of their own baby)17. 
However, thus far, there has been no direct evidence that the 
sleeping brain can covertly select which piece of information to 
prioritize when exposed to multiple sources of information. In 
this study, we investigate sleepers’ ability to filter information and 
whether they can allocate their attention towards the most rel-
evant source of information.

A main limitation in addressing this issue concerns the absence 
of verbal reports. Indeed, sleepers are unable to follow task instruc-
tions and to report which information they are tracking among 
multiples sources. To circumvent this issue, we constructed a pas-
sive version of the cocktail party paradigm18 in which sleepers were 
presented with a multi-talker situation in which one speech stream 
was more informative than the other stream. By combining this 
paradigm with electroencephalographic (EEG) recording during 
mid-day naps (that is, non-rapid eye movement (NREM) sleep), we 
studied whether, for two competing speech streams, the sleeping 

brain would favour one source of information over another on the 
basis of semantic relevance (Fig. 1). Thus, we presented participants 
(n =​ 24) with short ~1-min stories that are semantically relevant 
(tales, news, Wikipedia and movie excerpts). In the other ear, partic-
ipants received speech that is devoid of meaning despite possessing 
normal syntactic and phonological properties, as in Lewis Carroll’s 
Jabberwocky poem (for example, ‘The blicker flomps the dax to the 
elterior…​’). We capitalized on a neural decoding approach called 
stimulus reconstruction, which uses electrophysiological responses 
to approximate the envelope of speech streams19. The score of the 
reconstructed envelope reflects the amount of neural signal evoked 
by the auditory input and is influenced by participant’s attentional 
focus16,20. Importantly, reconstruction scores can be extracted for the 
two competing speech streams separately and continuously. Thus, 
we could establish how sleep depth affects sensory processing and 
the selective amplification of relevant inputs. Finally, we examined 
the effect of concomitant sleep hallmarks (slow waves, K-complexes 
and sleep spindles) on auditory processing.

We first trained a model mapping the EEG signal during wake-
fulness with the envelope of acoustic streams presented in isolation 
(Fig. 1, diotic training). We observed highly significant reconstruc-
tion scores (correlation between the original and the reconstructed 
envelope, see Methods) both for relevant (Supplementary Fig. 1; 
rreal =​ 0.08 ±​ 0.03; Wilcoxon signed-rank test against 0: z =​ 4.29, 
n =​ 24, P <​ 0.001, r =​ 0.87, 95% CI =​ 5.82 ×​ 10−2 to 9.21 ×​ 10−2) and 
Jabberwocky stories (rjabberwocky =​ 0.08 ±​ 0.04; Wilcoxon signed-rank 
test against 0: z =​ 4.29, n =​ 24, P <​ 0.001; r =​ 0.87, 95% CI =​ 5.07 ×​ 10−2 
to 9.93 ×​ 10−2). Importantly, when presented alone, the reconstruc-
tion of both types of streams did not differ, suggesting that the 
model was not biased towards reconstructing relevant stories when 
selective mechanisms are not at play (paired Wilcoxon signed-rank 
test: z =​ −​1.029, n =​ 24, P =​ 0.304, r =​ −​0.210, 95% CI =​ −​1.44 ×​ 10−2 
to 3.91 ×​ 10−3, Bayes factor of 3.14 indicating positive evidence for 
the null hypothesis; see Methods). When played concomitantly  
(Fig. 1, dichotic test), the two streams could still be reconstructed 
(both P <​ 0.001); however, the relevant stories led to higher recon-
struction scores than did Jabberwocky (paired Wilcoxon signed-
rank test: z =​ 4.11, n =​ 24, P <​ 0.001, r =​ 0.84, 95% CI =​ 2.09 ×​ 10−2 to 
3.90 ×​ 10−2). Comparing the correlation coefficients for both stories 
allowed us to compute a decoding performance score on a single-
story basis. For each trial, if the reconstruction score was higher 
for the relevant stream, the trial was coded as successfully decoded 
(1), otherwise it was coded as unsuccessful (0; see Methods). Thus, 
the decoding performance was defined as the proportion of trials 
for which the relevant stream was better reconstructed than the 
Jabberwocky stream. In wakefulness, the decoding performance 
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was 60.6% (Fig. 2a; Wilcoxon signed-rank test against the chance 
level of 50%: z =​ 3.89, n =​ 24, P <​ 0.001, r =​ 0.79, 95% CI =​ 57–64.2).

We then examined decoding performance in NREM sleep, first 
by combining light (that is, N2) and deep (that is, N3) sleep stages. 
Crucially, we obtained a significant, albeit smaller, overall decoding 
performance (52.4%; Wilcoxon signed-rank test against the chance 
level =​ 50%: z =​ 2.19, n =​ 24, P =​ 0.028, r =​ 0.45, 95% CI =​ 50–53.4), 
indicating that sleepers continue to track relevant stories during 
sleep. We then quantified the extent to which sensory encoding is 
modulated by sleep depth (that is light (stage 2) versus deep (stage 3) 
NREM sleep; Fig. 2b). Mixed-effect models trained on reconstruc-
tion scores obtained in light and deep sleep (see Methods) revealed 
an interaction between sleep depth and story type (likelihood-ratio 
test: χ​²(1) =​ 5.28, P =​ 0.021). Interestingly, this interaction reflected 
the fact that the effect of neural amplification of relevant com-
pared to Jabberwocky stories was present in light sleep (post-hoc 
Wilcoxon signed-rank test: z =​ 1.97, n =​ 24, P =​ 0.049, r =​ 0.40, 95% 
CI =​ −​3.48 ×​ 10−4 to 1.14 ×​ 10−2) but faded away during deep sleep 
(post-hoc Wilcoxon signed-rank test: z =​ −​0.67, n =​ 16, P =​ 0.501, 
r =​ −​0.17, 95% CI =​ −​1.19 ×​ 10−2 to 9.33 ×​ 10−3). As participants 
spend on average more time in light sleep than in deep sleep, we 
set out to examine whether this interaction could be due to a differ-
ence in the number of trials. Equalizing the number of trials using a 
bootstrap procedure confirmed the presence of a significant inter-
action between sleep stage and story type (see Methods). We further 
examined how sleep depth affected each story type separately using 
their respective reconstruction scores. Interestingly, the decline in 
sensory encoding was specific to the relevant stories and did not 
affect Jabberwocky stories (Fig. 2b). Indeed, our analysis revealed a 
significant effect of sleep depth on relevant stories (likelihood-ratio  

test: χ​²(1) =​ 246.77, P <​ 0.001), but not on Jabberwocky stories 
(likelihood-ratio test: χ​²(1) =​ 0.77, P =​ 0.380). In addition, recon-
struction scores were significantly positive in both light-sleep and 
deep-sleep stages for Jabberwocky (all P <​ 0.05 after a Bonferroni 
correction for multiple comparisons), whereas the reconstruction 
for the relevant speech decreased with sleep depth and was no 
longer significant in deep sleep (P >​ 0.05 even before correction). 
Thus, it seems that sleep is characterized by a gradual and selective 
decrease for the encoding of relevant information, rather than an 
overall decrease in sensory encoding.

Next, we investigated whether sleepers could maintain selective 
tracking over sustained periods of time (that is, over a whole story 
of about 1 min). To address this issue, we examined the decoding 
performance during the first half (0–30 s) and second half (30–60 s) 
of the concurrent stories (Fig. 2c). This analysis revealed an inter-
action between the sleep–wake state and the time period (likeli-
hood-ratio test: χ​²(1) =​ 3.99, P =​ 0.046). As expected, the decoding 
performance in wakefulness was stable during the whole story 
(first half versus second half, paired Wilcoxon signed-rank test: 
z =​ −​0.122, n =​ 24, P =​ 0.903, r =​ −​0.03, 95% CI =​ −​2.706 ×​ 10−2 to 
2.500 ×​ 10−2). By contrast, during sleep, the decoding performance 
score was significant during the first-half period but not during the 
second-half period, leading to a significant difference between these 
two periods (paired Wilcoxon signed-rank test: z =​ 2.92, n =​ 24, 
P =​ 0.004, r =​ 0.60, 95% CI =​ 0–1.280 ×​ 10−1). Thus, although the 
amplification of relevant speech is maintained during sleep, it seems 
to be transient.

We then set out to examine how this pattern is affected by 
sleep depth (Fig. 2d). For light sleep, we observed an interaction 
between the story type and the temporal period (likelihood-ratio 
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Fig. 1 | Experimental procedure. On the left, each recording session was composed of a training and test phase. During the training and beginning of the 
test phase, participants were instructed to stay awake; they were authorized to fall asleep during the latter part of the test phase. On the right, during the 
training phase, participants listened to either relevant (real speech; blue) or Jabberwocky (red) stories presented diotically (that is, the same information 
in both ears). The envelope of the sound and the filtered EEG signal were extracted to train a linear filter mapping the EEG signal to the sound envelope 
(see Methods). During the test phase, two different stories (relevant versus Jabberwocky) were played simultaneously in dichotic streams (that is, 
different auditory information in the two ears). Dichotic streams were presented both during wakefulness and sleep. The linear filter obtained from the 
training phase was applied to the filtered EEG envelope and a reconstructed envelope was obtained for each trial (black curve). This envelope can be 
seen as a mixture of both auditory inputs, which was compared to the original envelope of each of the two inputs separately (blue and red curves) using 
Pearson’s correlation method (reconstruction scores =​ Pearson’s coefficient).
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test: χ​²(1) =​ 4.28, P =​ 0.039), reflecting a better reconstruction for 
the relevant story during the first-half period (post-hoc Wilcoxon 
signed-rank test across 24 participants: z =​ 3.17, P =​ 0.002, r =​ 0.65, 
95% CI =​ 4.349 ×​ 10−3 to 2.587 ×​ 10−2) but not during the second-
half period (post-hoc Wilcoxon signed-rank test: z =​ 0.429, P =​ 0.67, 
r =​ 0.09, 95% CI =​ −​8.500 ×​ 10−3 to 1.299 ×​ 10−2). Interestingly, we 
also observed an interaction in deep sleep (likelihood-ratio test: 
χ​²(1) =​ 8.34, P =​ 0.004). Although restricted comparisons only 
revealed trends, this significant interaction seems to emerge from 

a better reconstruction of the relevant story during the first-half 
period (post-hoc Wilcoxon signed-rank test across 16 participants: 
z =​ 1.55, P =​ 0.121, r =​ 0.39, 95% CI =​ 3.032 ×​ 10−3 to 2.880 ×​ 10−2), 
contrasting with a worse reconstruction during the second-half 
period (post-hoc Wilcoxon signed-rank test: z =​ −​1.55, P =​ 0.121, 
r =​ −​0.39, 95% CI =​ −​3.399 ×​ 10−2 to −​3.181 ×​ 10−3). This rever-
sal suggests the involvement of suppressive mechanisms in deep 
sleep (see below for further evidence). Interestingly, although the 
relevant stream tended to be better reconstructed at the beginning 
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Fig. 2 | Reconstruction score and decoding performance across wake and NREM sleep. a, Decoding results for the selective tracking of the relevant 
stream during wakefulness and NREM sleep across participants. The curved lines indicate the distribution of data, the dark bars represent the mean of 
the distribution, and the lighter area surrounding the mean denote the s.e.m. across participants. Individual data points are displayed as coloured circles 
(n =​ 24 for both wakefulness and NREM sleep). The asterisks show the significance level of the signed-rank test comparing performance against the 
50% chance level (dashed line). Note that the tracking of the relevant stream could be successfully evidenced in both wake and sleep. b, Reconstruction 
scores for the relevant and Jabberwocky stories in wakefulness, light sleep and deep sleep (n =​ 24, 24 and 16 for wakefulness, light sleep and deep sleep, 
respectively). The horizontal bars displayed above the distributions denote the significance level of the paired signed-rank test between relevant and 
Jabberwocky reconstruction scores. The asterisks above the distributions indicate comparisons with 0 (dashed line; signed-rank test). c,d, As in panels a 
and b, respectively, but for the first half (0–30 s) and the second half (30–60 s) of the stories separately. Note that the use of nonparametric signed-rank 
tests limits the influence of outliers (see panel a and the first half of the trials in panel c). ***P < 0.005, **P < 0.01, *P < 0.05; NS, not significant.
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of streams, overall reconstruction scores remained constant dur-
ing entire streams (rrelevant and rJabberwocky together; light sleep, first 
half versus second half, Wilcoxon signed-rank test across 24 par-
ticipants: z =​ −​0.743, P =​ 0.458, r =​ −​0.15, 95% CI =​ −​1.216 ×​ 10−2 
to 5.122 ×​ 10−3; deep sleep, first half versus second half, Wilcoxon 
signed-rank test across 16 participants: z =​ 0.414, P =​ 0.679, r =​ 0.10, 
95% CI =​ −​6.567 ×​ 10−3 to 9.681 ×​ 10−3).

In the previous analyses, speech envelopes were reconstructed 
integrating EEG data over rather long epochs (0–500 ms, here called 
time-lags). To explore how stimulus processing unfolds in time, we 
focused on individual time lags (see Methods). This allowed us to look 
at the time windows during which speech envelopes are best recon-
structed and modulated by stimulus relevance. When examining 
wake data, we observed, as elsewhere19, three peaks around 110, 230 
and 330 ms, with scalp topographies suggesting a preponderant role 
of the auditory cortex in the reconstruction of the stimulus envelope 
(Fig. 3a; Monte-Carlo test on clusters: ∑​t(23) =​ 20.01, Pcluster =​ 0.011, 
d =​ 0.360; ∑​t(23) =​ 45.58, Pcluster =​ 0.003, d =​ 0.424; and ∑​t(23) =​ 37.18, 
Pcluster =​ 0.004, d =​ 0.474, respectively). In light sleep, the temporal 
profile of stimulus reconstruction was strikingly similar to wakeful-
ness, suggesting a preservation of the same processing steps (Fig. 3b). 
Furthermore, there was a main effect of stimulus category on recon-
structions scores (relevant >​ Jabberwocky stories) for the second and 
third peaks (Monte-Carlo test on clusters: ∑​t(23) =​ 14.26, Pcluster =​ 0.017, 
d =​ 0.190 and ∑​t(23) =​ 18.94, Pcluster =​ 0.010, d =​ 0.251, respectively). In 
deep sleep, the same three peaks were preserved (Fig. 3c). However, the 
reconstruction profiles for the relevant and Jabberwocky stories largely 
overlapped, illustrating the loss of selective amplification for the rele-
vant stories. The conservation of the three peaks across vigilance states 
suggests that the sensory processing steps triggered by external inputs 
are largely conserved from wakefulness to sleep, whereas the selective 
amplification of relevant signals is functional in light sleep but vanishes 
during the deeper parts of NREM sleep.

The effect of sleep depth on the encoding and selection of relevant 
stories could be traced back to sleep rhythms such as sleep spindles 
and slow oscillations. Slow oscillations in light sleep were approxi-
mated to K-complexes as they generally occur in isolation and have 
an asymmetric profile, and those in deep sleep were considered as 
standard sleep slow waves as they generally appear in trains and are 
more symmetrical (Supplementary Fig. 2). Sleep rhythms consti-
tute hallmarks of sleep physiology, but their respective roles remain 
unsettled. For instance, K-complexes have been argued to both pre-
serve sleep by suppressing sensory information21 and, conversely, 
constitute windows of wakefulness22,23. This lack of consensus might 
reflect the focus on brain responses to single events. For example, iso-
lated words will tend to trigger K-complexes but are usually too short 
to allow examining the influence of K-complexes on the incoming 
signals that follow. By contrast, the continuous nature of the stimulus 
reconstruction approach allowed us to study the dynamic influence 
of sleep rhythms on both sensory encoding and stimulus selection.

Indeed, we found that, depending on which timescale is con-
sidered, K-complexes can either promote or suppress sensory 
responses (Fig. 4a). Just before the K-complexes, both stories were 
reconstructed at a similar level, revealing sensory encoding without 
a prioritization of one stream over the other (Fig. 4a). However, dur-
ing the window centered on K-complexes, stimulus reconstruction 
vanished for both stories, potentially due to a period of neuronal 
silencing at the cortical level24. Crucially, just after the K-complexes, 
not only were both stories reconstructed but the relevant stories also 
had even higher reconstruction scores (difference, Monte-Carlo 
test on clusters: 4.6–9.9 s, ∑​t(22) =​ 124.38, Pcluster =​ 0.026, d =​ 0.214). 
Thus, although K-complexes disrupted sensory encoding during 
their occurrence, they then favoured the amplification of the rel-
evant stream after completion.

The temporal profile for slow waves in deep sleep was markedly 
different (Fig. 4c). Stimulus reconstruction of the relevant stories 

a

–2

0

2

z-
sc

or
e

P
at

te
rn

s
W

ei
gh

ts

0 50 100 150 200 250 300 350

Lag (ms)

–0.01

0

0.01

0.02

0.03

0.04

R
ec

on
st

ru
ct

io
n 

sc
or

e

b

0 50 100 150 200 250 300 350

Lag (ms)

–0.01

0

0.01

0.02

0.03

0.04

R
ec

on
st

ru
ct

io
n 

sc
or

e

c

0 50 100 150 200 250 300 350

Lag (ms)

–0.01

0

0.01

0.02

0.03

0.04

R
ec

on
st

ru
ct

io
n 

sc
or

e
Fig. 3 | Spatiotemporal integration of acoustic information. a, Individual models were computed for each time lag (see Methods) (bottom). Correlation 
coefficients for the relevant (blue) and Jabberwocky (red) stories presented during wakefulness (n =​ 24) were extracted for each of these time lags and 
averaged across participants. The horizontal black bars show significant clusters for the comparison between the blue and the red curves (Pcluster <​ 0.05). 
Three main peaks can be observed at 110, 230 and 330 ms, respectively. Scalp topographies of filter weights and patterns corresponding to the three 
different peaks (see Methods) are also shown (top). Values were z-scored across electrodes to emphasize regional differences. b,c, The same temporal 
profile as in panel a for stories in light (b; n =​ 24) and deep (c; n =​ 14) sleep when focusing on the first-half period (see Fig. 2). Note the similarity of  
the profile between wakefulness and light sleep. The vertical gray bars represent the identified peaks of reconstruction as described in the Methods  
(±​30 ms for the sake of visualization). These peaks were used to compute the scalp topographies.
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was significant before the slow wave (−​9.5 to −​2.6 s, Monte-Carlo 
test on clusters: ∑​t(14) =​ 174.69, Pcluster =​ 0.032, d =​ 0.295) but not 
during its occurrence. Further analysis revealed that the level of 
reconstruction for the relevant stream was significantly lower dur-
ing slow waves than during the average reconstruction obtained in 
deep sleep (−​2.5 to 4.1 s, Monte-Carlo test on clusters: ∑​t(14) =​  
−​118.67, Pcluster =​ 0.041, d =​ −​0.497; Supplementary Fig. 3). Inversely, 
the Jabberwocky was significantly reconstructed only during slow 

waves (−​6.8 to 8.9 s, Monte-Carlo test on clusters: ∑​t(14) =​ 465.16, 
Pcluster =​ 0.004, d =​ 0.561), and there was no significant modulation of 
the reconstruction score around slow waves compared to the aver-
age score obtained in deep sleep (Supplementary Fig. 3). Overall, 
these findings suggest an active and selective suppression of relevant 
stimuli in deep NREM sleep mediated by slow waves. However, it 
is important to stress that, as slow waves typically occur in trains, 
it is difficult to tie the modulation of reconstruction scores to the 
down state of the slow waves used to align the reconstruction scores.  
It remains possible that other slow waves preceding and follow-
ing the slow waves used here as a reference also participated in the  
pattern of results observed in Fig. 4c.

Sleep spindles had a rather moderate effect on stimulus recon-
struction. Indeed, both type of stories were reconstructed dur-
ing the entire −​10 to 10-s window (Monte-Carlo test on clusters: 
∑​t(22) =​ 1,027.28, Pcluster <​ 0.001, d =​ 0.958 and ∑​t(22) =​ 815.62, 
Pcluster <​ 0.001, d =​ 0.675 for relevant and Jabberwocky streams, 
respectively). However, whereas relevant stories were better recon-
structed than Jabberwocky stories before the spindles (Fig. 4b; differ-
ence, Monte-Carlo test on clusters: −​10 to −​4.3 s, ∑​t(22) =​ 128.32, 
Pcluster =​ 0.018, d =​ 0.305), this difference disappeared during and fol-
lowing spindles. Sleep spindles were traditionally thought to enable 
sensory disconnection25, yet they were reported to have a limited 
effect on sensory encoding26. Our results further temper the view 
that spindles reflect sensory-gating mechanisms. They could rather 
disrupt higher-order mechanisms, such as those involved in the 
selective amplification of relevant information.

By investigating brain responses to multi-talker speech, we show 
that both semantically relevant and meaningless Jabberwocky sto-
ries are encoded regardless of vigilance state, confirming that the 
loss of consciousness associated with sleep does not imply a full 
shut down of information processing27–29. Strikingly, the processing 
advantage for the relevant compared to Jabberwocky stories gen-
eralized from wakefulness to light sleep, providing evidence that 
the ability to selectively track relevant events remains functional 
during sleep. Yet, our study also reveals that this capacity differs in 
two respects compared to wakefulness. First, selective tracking was 
transient, contrasting with the sustained amplification observed in 
wakefulness (Fig. 2b and Supplementary Fig. 6). The sleeping brain 
might be unable to track relevant messages over long time periods 
due to the large decrease of corticocortical connectivity in NREM 
sleep30. It is also possible that it becomes habituated over time to 
the semantic properties of the relevant message31 that fostered its 
saliency in the first place. Second, the amplification of relevant 
speech was observed primarily during light NREM sleep. Indeed, 
although sensory encoding remained constant, selective tracking 
of the relevant stories was completely wiped out in deeper-sleep 
stages. Importantly, whereas the reconstruction of the relevant sto-
ries decreased with sleep depth, it remained stable for Jabberwocky 
stories. This result reveals that the initiation of sleep and its pro-
gression towards deeper stages seem to affect the amplification of 
relevant signals rather than sensory encoding per se.

Thanks to the dynamic properties of the stimulus reconstruction 
approach, we could trace back the global changes in stimulus encod-
ing and selection to specific markers of sleep physiology. Although 
sleep is usually scored on large windows32, an abundant literature 
suggests that its microstructure is key to understanding how it alters 
the processing of external inputs22,25,33. In light sleep, participants’ 
ability to focus on the relevant signal was mediated by K-complexes. 
Indeed, right after a K-complex, both sensory encoding and ampli-
fication of the relevant signal were restored. Thus, K-complexes 
could allow sleepers to sample the environment following a pertur-
bation. Interestingly, the relevance of a stimulation is linked to its 
propensity to trigger a K-complex22. The regain of amplification for 
relevant signals following K-complexes is consistent with the recent 
hypothesis that their global distribution at the scalp level reflects 
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Fig. 4 | Effect of sleep spindles, K-complexes and slow waves on stimulus 
reconstruction. a–c, In each panel, the reconstruction scores were time 
locked to a given graphoelement (K-complexes in light sleep (a): n =​ 23; sleep 
spindles in light sleep (b): n =​ 23; and slow waves in deep sleep (c): n =​ 15) 
and averaged across participants. The down states of K-complexes and 
slow waves and the middle of spindles were used as time =​ 0. The shaded 
areas denote the s.e.m. computed across participants. The curves were 
smoothed with a 500-ms-wide Gaussian kernel for visual purposes only; 
statistics were computed prior to smoothing. The coloured horizontal bars 
show the significant clusters when comparing reconstruction scores with 
0 (Pcluster <​ 0.05). The black horizontal bars show significant clusters when 
comparing the two reconstruction scores (relevant versus Jabberwocky 
stories, Pcluster <​ 0.05). The gray bars indicate the temporal window size 
for computing the Pearson correlation (reconstruction score) between 
reconstructed and original signals. The average traces of K-complexes 
and slow waves are displayed on the top of the corresponding panel. An 
archetypal spindle is also shown. Note the differential effect of light-sleep 
K-complexes and deep-sleep slow waves on stimulus reconstruction.
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the recruitment of the arousing system34. Furthermore, the recovery 
of wake-like processes following K-complexes could be mediated 
by a transitory surge in noradrenaline, a neuromodulator involved 
in attentional processes35,36. Thus, in light sleep, K-complexes might 
restore the capacity of the brain to integrate salient information for 
a short period of time.

The effect of slow waves in deep sleep was markedly different. 
Indeed, we found that slow waves had an inhibitory, rather than an 
amplificatory, effect on relevant signals. This could be interpreted as 
an active and selective suppression of relevant stimuli in deep NREM 
sleep mediated by slow waves. In deep sleep, slow oscillations occur 
in trains and have been shown to disrupt cortical processes37 and the 
integration of information38. Here, using a multi-talker situation, we 
show that relevant signals are actively and specifically suppressed com-
pared to matched but irrelevant signals. But how and why would a rel-
evant story be selectively suppressed? Competing stimuli are encoded 
by separate neural coalitions39 and slow waves are triggered by local 
activations within the cortex40, such that slow waves may affect one 
stream (that is, one coalition) but not the concurrent stream. As the 
coalition encoding relevant signals is more active than its irrelevant 
counterpart, even during sleep, it might increase the probability of 
triggering slow waves, leading to its own inhibition. Such suppression 
of salient signals during NREM sleep could be linked to the memory 
function of sleep: by counteracting the influence of salient external 
signals, slow waves may favour an efficient and reliable strengthen-
ing of pre-existing memories2. Thus, depending on the sleep depth, 
a given signal could either be processed according to its relevance or 
it could be suppressed, shifting the division of labour from gathering 
external information (that is, sensory inputs) to reshaping internal 
representations (that is, pre-existing memories).

What are the mechanisms associated with the selection of rel-
evant messages in this multi-talker situation? Because executive 
functions, which are necessary for endogenous forms of attention, 
are largely impaired in sleep41, here, we constructed a passive ver-
sion of the cocktail party paradigm involving an exogenous form 
of attentional amplification driven by the relevance of concur-
rent messages (that is, a relevant message attracts listener’s atten-
tion compared to irrelevant messages). Moreover, to increase the 
involvement of attentional processes in this protocol, we explic-
itly instructed participants to focus on relevant speech and ignore 
Jabberwocky before falling asleep, so as to induce the maintenance 
of this task set during sleep28. Thus, it is arguable that the effect of 
selective amplification that we found in sleep is sustained by atten-
tion towards the relevant stream. However, one might argue that our 
finding is driven by the fact that relevant speech is more informa-
tive (for example, more familiar and meaningful) than Jabberwocky, 
regardless of attention. Against this interpretation, we found that 
the relevant stream, when presented and attended in isolation, is 
not better reconstructed than Jabberwocky (Supplementary Fig. 1), 
dampening a pure locus in terms of stimulus category. Furthermore, 
to verify that our paradigm is genuinely sensitive to attentional fac-
tors, we performed a separate control experiment during wakeful-
ness in which we orthogonalized attention and stimulus category 
(see Supplementary Information).

Participants were now asked to orient either towards relevant 
or Jabberwocky stories on a trial-by-trial basis. Our results con-
firm that attention can flexibly amplify either of the two categories 
(Supplementary Fig. 4). In particular, whereas attended relevant 
speech led to better reconstruction scores than ignored Jabberwocky 
(reconstruction scores for real speech and Jabberwocky: 0.062 ver-
sus 0.023, paired Wilcoxon signed-rank test across 22 participants: 
z =​ 3.75, P <​ 0.001, r =​ 0.80, 95% CI =​ 0.023–0.050), the effect was 
reversed when Jabberwocky was attended over relevant speech 
(0.052 versus 0.029, paired Wilcoxon signed-rank test: z =​ 3.72, 
P <​ 0.001, r =​ 0.79, 95% CI =​ 0.011–0.028). Nonetheless, we also 
observed an effect of stimulus category above and beyond attention  

allocation (that is, the effect was reversed but not to the same 
extent). Although the effect of attention was an order of magni-
tude larger than the effect of stimulus category, it remains unset-
tled whether the increased reconstruction of relevant speech stems 
from attentional processes, stimulus properties or a combination 
of both (for example, informative stimuli automatically grab atten-
tional resources). Finally, examining the auditory-evoked potentials 
(rather than reconstruction scores) shows that neural responses to 
sounds were amplified when a given stream was attended irrespec-
tive of stimulus category (Supplementary Fig. 5). Together with the 
fact that the relevant stream in our main experiment was selectively 
modulated until reversal from wake to deep sleep, whereas the sen-
sory encoding of the Jabberwocky stream remained unaffected, our 
results buttress the interpretation that an attentional form of ampli-
fication drives the increase in reconstruction scores for relevant 
messages. Further studies are necessary to disentangle the exact 
mechanisms that allow the sleeper to selectively amplify relevant 
signals over irrelevant ones.

In an ever-changing environment, the ability to process relevant 
signals during light sleep offers substantial benefits. Especially 
when considering that light sleep represents about half of the total 
sleep time in humans42. In particular, it would allow signalling the 
presence of events, necessitating a rapid reversal towards wakeful-
ness. Such mechanisms may rely on local neural processors, which 
could explain why they operate without awareness. Our data were 
obtained in NREM sleep during daytime naps and it remains to be 
seen whether relevant signals continue to be amplified during night 
sleep. Indeed, although sleep stages are uniformly scored across day-
time and night-time sleep, sleep is typically shallower during naps43. 
Likewise, it would be interesting to investigate whether our finding 
extends to REM sleep or disappears as in deep NREM sleep. Indeed, 
brain activity in REM sleep shares more similarities with wakeful-
ness than with NREM sleep, but dreams, which occur in 80% of 
REM sleep44, reflect the focus on internal representations, poten-
tially limiting the processing of external inputs27. Finally, a crucial 
question for future research concerns the extent to which neuronal 
plasticity actually benefits from the progressive disconnection from 
the outside world. Addressing such an issue might provide new 
insights to the fundamental question of why organisms need to be 
unresponsive to their environment to better learn from it.

Methods
Audio material. Eighty texts (n =​ 80) in French were selected from Wikipedia 
articles (www.wikipedia.org), news reports, tales or monologue transcripts 
from movies. They were first adapted to a length of about 180 words. Then, the 
syntax and vocabulary were simplified to produce easily tractable texts. Using the 
Lexique database45, a pseudo-lexicon was created matching any content words in 
the French texts with a given pseudo-word. These pseudo-words were selected 
to ensure their similarity with the words of the French lexicon. French texts were 
then transformed in syntactically correct but meaningless texts (Jabberwocky) by 
keeping function words but replacing each content word with its pseudo-word 
counterpart. Pairs of texts were matched in total duration, syntax, word frequency 
and prosody and only differed in being either meaningful or meaningless. 
They were then converted into speech using IRCAMTTS, a text-to-speech 
MATLAB-based software46. Pauses of 150 ms were imposed between sentences 
to maintain a constant auditory flow. Audio files were digitalized at a sampling 
rate of 44.1 kHz. Then, the acoustical properties of the voice uttering the texts 
were manipulated using the IRCAMTRAX module of the Logic Pro software 
(Apple). Two easily distinguishable voices were produced from the original neutral 
speaker by modulating the pitch and the size vocal tract. These transformations 
were performed after the text-to-speech procedure. Thus, the same 80 pairs of 
real-speech and Jabberwocky texts could be pronounced either by a high-pitch 
or low-pitch voice without altering other parameters, such as the prosody or total 
duration. Dichotic stimulations were created by pairing each real-speech story with 
a distinct Jabberwocky story (that is, obtained from a different real story). Pairs of 
real-speech and Jabberwocky stories were matched in terms of silence-to-signal 
ratio by increasing silences (the portions of signal with amplitude between 0.001 
and −​0.001 of the maximum amplitude and longer than 50 ms) with the adequate 
time constant. The length of each story was also matched by slightly changing the 
sound tempo with a MATLAB (Mathworks Inc.) implementation of the VSOLA 
(variable parameter synchronized overlap add) algorithm47. The volume of acoustic 
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stimuli was set between 45 and 50 dB following participants’ preferences and in 
line with our previous studies15,27,28. This range was chosen to allow participants 
to hear the stimuli effortlessly without preventing sleep. Stimulations were played 
via an Echo Fire 12 (Echo Digital Audio) soundcard. Finally, acoustic energy was 
normalized across all texts by setting the root-mean-square value of the acoustic 
signal to a standard value. Thus, each pair of real-speech and Jabberwocky stories 
had identical durations and equivalent acoustic energy. A trial refers to the full 
presentation of a single story (diotic trials in the training phase) or a pair of stories 
(dichotic trials in the test phases) for about 1 min (73.57 ±​ 5.16 s, mean ±​ standard 
deviation (s.d.) across stories, minimum: 54.04 s, maximum 83.51 s). During the 
dichotic trials, the real-speech story was assigned a side (left or right) and voice 
(high pitch or low pitch), and its paired Jabberwocky story was assigned the 
opposite side and voice. These parameters were randomly selected for each trial.

Participants. A total of 29 (n =​ 29) French native speakers (13 females, age: 
18–33 years) with self-declared normal hearing and no history of sleep disorders 
participated in this study. Five participants were discarded from our analyses 
because they did not sleep enough (<​1 min of consolidated NREM sleep, that 
is, NREM2 or NREM3) or not at all (n =​ 3), or due to technical issues (n =​ 2). 
Participants were selected through questionnaires assessing their sleep habits and 
daytime sleepiness (Epworth scale: 10.97 ±​ 0.14 on a scale of 24). In addition, they 
were required to sleep 30% less than usual the night before the experiment and 
were deprived from stimulants (for example, coffee) on the day of the recordings 
to increase the probability that they would fall asleep while hearing the acoustic 
stimuli. Participants were equipped with an actigraph the day before the recording 
session to check their compliance with sleep restriction. Recording sessions always 
occurred in the early or late afternoon to increase sleepiness and favour NREM 
sleep. The present protocol had been approved by the local ethical committee 
(Conseil d’Evaluation Ethique pour les Recherches en Santé, University Paris 
Descartes, Paris, France). Participant sample size was chosen based on previous 
studies using the stimulus reconstruction approach16,19 or investigating cognitive 
processing during sleep11,12,15,28.

Protocol. Participants were equipped with 64-channel EEG gel-nets (EGI system, 
Electrical Geodesic Inc.) and seated on a reclining chair in a dark, soundproof 
and magnetically shielded booth. Participants started with a training phase during 
which they were exposed to six real-speech and six Jabberwocky stories played 
in a diotic manner (that is, the same story was presented to both ears at the same 
time). The training phase was self-paced. Following the training phase, the first 
part of the test phase (‘wake test’) was initiated and the participants were presented 
with eight dichotic trials: a real-speech story was presented to one ear and a 
Jabberwocky story to the other ear. Participants were asked to stay awake with their 
eyes closed during the training phase and wake-test phases and reminded to do so 
whenever markers of drowsiness appeared in the EEG. Trials followed each other 
separated by a 4–6-s jitter (random uniform distribution). Then, during the sleep-
test phase, participants were put in a reclined position and allowed to fall asleep. 
Novel pairs of real-speech and jabberwocky stories were used in sleep. Auditory 
stimulations went on, trial after trial, for about 40 min (30 trials) with the same 
4–6-s jitter between trials. During the training phase, participants were asked to 
attentively listen to the diotic training trials. During the wake-test phase (dichotic 
trials), subjects were instructed to focus on the relevant (real-speech) story and 
to ignore the Jabberwocky story. In the sleep-test phase, participants were asked 
to maintain their attention towards the relevant story as long as they remained 
awake and to resume the task in case of an awakening. Participants were explicitly 
allowed to fall asleep in the sleep-test phase. Data collection and analyses (stimulus 
reconstruction) were blind to the conditions of the experiment.

To check that a precise synchronization between auditory stimulations and 
EEG recordings was preserved throughout the recordings, a third audio channel 
was associated to the real and Jabberwocky auditory streams. In this additional 
channel, a square electrical signal was played every second and sent to the EEG 
amplifier (participants were not aware of this procedure). We later checked that 
this 1-s pace had been conserved (maximal observed lag: 2 ms, that is, 1 sample 
at 500 Hz). To avoid any electromagnetic contamination from earplugs onto 
EEG recordings, a non-electrical auditory system was used (RLINK Ear Tone 
3 A, 10 Ohms; Interacoustic Inc.). EEG signals were referenced online to Cz and 
sampled at 500 Hz. Chin electromyograms (EMG) and electrooculograms (EOG) 
were extracted from sensors placed around the eyes and on the chin.

Behavioural data analyses. At the end of the recording session, participants 
answered a multiple-choice questionnaire on the real-speech stories heard during 
the experiment as well as stories that were not played (one question for each story, 
4 options per question, 25% chance level, n =​ 80 questions). Participants were asked 
to guess the answer whenever they did not remember hearing the story. Besides, 
some questions referred to stories that were not played in a given recording 
session. Following each question, participants had to indicate whether they 
remembered hearing the story during the experiment and whether they actually 
knew the answer to the question beforehand. The mean performance scores on 
the questionnaire were computed for each participant. When participants declared 
that they knew the correct answer beforehand, we discarded the corresponding 

question from further analysis (9.18 ±​ 1.54%, mean ±​ standard error of the mean 
(s.e.m.) across 29 participants). In addition, if more than 50% of the participants 
(theoretical chance level: 25%) could guess the answer of a given question without 
even having heard the story, the question was discarded. All participants (including 
participants that did not sleep, n =​ 29) were included here. Finally, for each 
participant included in the EEG analyses, we computed participants’ correctness in 
the different wake/sleep stages. As participants might change their vigilance state 
during the course of a given story, we attributed to this story the lightest (that is, 
the most conservative) stage observed during its presentation. We computed the 
average correctness for the difference in vigilance states accordingly (wakefulness: 
n =​ 24 participants, light sleep: n =​ 23, deep sleep: n =​ 10, all sleep: n =​ 23; 
Supplementary Table 1). Comparing the correctness scores to the theoretical 
chance level across participants revealed that participants did not remember the 
stories played during sleep (correctness in NREM sleep: 24.44 ±​ 3.12%; Wilcoxon 
signed-rank test to 25% across 23 participants: z =​ −​0.122, P =​ 0.903, r =​ −​0.025, 
95% CI =​ 17.391–30.769) contrary to the stories heard while awake (Wilcoxon 
signed-rank test to 25% across 24 participants: 46.80 ±​ 3.26%; z =​ 4.06, P <​ 0.001, 
r =​ 0.83, 95% CI =​ 39.286–54.167; see Supplementary Table 1).

Sleep scoring. The continuous EEG and EOG signals were re-referenced to 
the mastoid electrodes (opposite mastoid for the EOG) and band-pass filtered 
between 0.1 and 30 Hz (two-pass Butterworth filter, fifth order). The EMG signal 
was obtained with a local derivation on the cheek and band-passed between 80 
and 160 Hz (two-pass Butterworth filter, fifth order). Data were then segmented 
and scored on 20-s-long windows by an experienced scorer (T.A.) and following 
established guidelines32. Only a subset of channels (C3, C4, Fz and Pz) was 
used to score vigilance states along with the two EOG channels and the EMG 
channel. Recordings were scored as wakefulness (45.99 ±​ 2.19 min, that is, the 
mean duration ±​ s.e.m. across participants), NREM1 (9.58 ±​ 1.09 min), NREM2 
(16.34 ±​ 1.52 min) and NREM3 (6.87 ±​ 1.62 min). NREM1 was not analysed here 
as we had a highly variable and often low number of trials per participant. Indeed, 
NREM1 is a volatile transitionary state between wake and sleep that is easily 
disturbed by auditory stimuli. We focused on NREM2 (here referred to as light 
sleep) and NREM3 (deep sleep) stages. Only 16 participants entered into deep 
sleep during the recording session. None of the participants entered the REM stage.

Stimulus reconstruction. The EEG signal was here re-referenced to the signal 
averaged across all electrodes. The EEG signal was then filtered between 2 and 8 Hz 
with a two-pass Butterworth filter (fifth order) and then downsampled at 100 Hz 
to reduce data dimensionality. The filtered EEG signal was segmented according to 
trial onset and offset. The amplitude of the filtered EEG envelope was subsequently 
extracted by applying the Hilbert transform. In addition, for each trial, the audio 
stories played at that time (one story for the training phase; two stories for the test 
phases) were filtered below 8 Hz with a two-pass Butterworth filter (fifth order) 
and downsampled at 100 Hz. The sound’s envelope was obtained again by applying 
the Hilbert transform.

Training phase. A first step in the stimulus reconstruction approach is to compute 
the linear model between the auditory input and the EEG signal. The model here 
was trained on diotic trials (one story played to both ears, six real-speech and six 
Jabberwocky stories for a total duration of 14.6 min). By using diotic trials, we 
ensured that the model was trained to decode the sound’s envelope regardless of 
attention. In addition, by using both real-speech and Jabberwocky stories in the 
training phase, we increased the probability that the decoders would be insensitive 
to the stimulus category. EEG data were shifted compared to the auditory envelope 
from 0 ms to 500 ms (here referred to as time lags), which allows the integration of 
a broad range of EEG data to reconstruct each stimulus time point22. In practice, 
this means that each sample in the auditory envelope was correlated with the band-
pass EEG envelope from all sensors and all samples between 0 and 500 ms relative 
to the auditory signal. The linear model was optimized to map the EEG signal from 
each electrode and time lag to the sound envelope. The obtained filter (matrix of 
weights: sensor per time lags) was then used in the testing phase to reconstruct the 
stimuli (Fig. 1).

Test phase. Here, for each trial, two different auditory streams were played in 
competition, one relevant story (real speech) and one Jabberwocky story. Using 
the trained model, one envelope can be reconstructed from the EEG signal. This 
reconstructed envelope is assumed to correspond to a noisy mixture of both 
streams’ envelope. To determine which story was predominantly reconstructed 
(if any), the reconstructed envelope was compared to both original envelopes 
using the Pearson correlation method. For each trial, we therefore obtained two 
Pearson correlation coefficients, one for the relevant story (rrelevant) and one for the 
Jabberwocky story (rJabberwocky). These correlation coefficients were used as an index 
of the quality of the stimulus reconstruction of the two streams. When rrelevant was 
higher than rJabberwocky—that is, when the reconstructed envelope was more similar 
to the envelope of the relevant story than to the envelope of the Jabberwocky 
story—signal tracking was declared as favouring the relevant story. Thus, trials 
with rrelevant >​ rJabberwocky were scored as correct (1; real-speech story tracked) and 
trials in which rrelevant ≤​ rJabberwocky were scored as incorrect (0). Thus, the decoding 
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performance (Fig. 2a–c) is the percentage of correctly decoded trials averaged 
across participants.

The reconstruction was either performed on the entire trials or on smaller 
windows (Figs. 2–4). Indeed, sleep is a dynamical process and sleep depth is 
more than likely to change over an entire trial duration (~73 s). As we intended 
to investigate both the effect of sleep stages on signal selection and its within-trial 
dynamics, we computed reconstruction scores on 10-s time windows either locked 
on the sleep scoring windows (Fig. 2a,b) or locked on the beginning of the stream 
(Fig. 2c,d). The former epoching was used to examine the influence of sleep stages 
on signal selection (Fig. 2a,b), whereas the latter was used to obtain the within-trial 
dynamics (Fig. 2c,d). When considering windows locked on trials onset, windows 
are no longer time locked to sleep scoring. Thus, a given window might contain 
different sleep stages. In such cases, the window was attributed the lightest sleep 
stage present.

Individual lags, weights and patterns. Each time point of the sound envelope 
was reconstructed by using 500 ms of the EEG signal (time lags). However, these 
different time lags do not equally contribute to the stimulus reconstruction10.  
To better understand the contribution of each lag, filters were trained on the  
EEG for each single time lag. An envelope was then reconstructed for each  
trial and compared to the envelope of the relevant and Jabberwocky stories.  
A correlation coefficient was therefore obtained for each stimulus category 
(relevant versus Jabberwocky stories) and individual lag. To get a reliable estimate 
of the contribution of each individual lag, we filtered out participants with less 
than five data points in a given sleep stage and averaged measures within the 
remaining participants. This procedure excluded 2 participants in deep sleep in 
the first half of the trials (n =​ 24, 24 and 14 in wakefulness, light sleep and deep 
sleep, respectively; Fig. 3) and excluded 4 participants in deep sleep in the second 
half of the trials (n =​ 24, 24 and 12 in wakefulness, light sleep and deep sleep, 
respectively; Supplementary Fig. 7). The corresponding values averaged across 
participants are shown in Fig. 3. In all stages, three reconstruction peaks were 
observed around 110, 230 and 330 ms. The positions of the peaks were determined 
by searching for the maximum reconstruction coefficients for each stimulus 
(relevant and Jabberwocky) on the following intervals in each vigilance state: 
0–150 ms, 150–250 ms and 250–400 ms. The positions of the peaks were averaged 
across participants and approximated to the closest time lag. For each peak, the 
weights of the individual filter were extracted from the model and displayed 
on a topographical map (Fig. 3a). The patterns (that is, the spatial profile of the 
EEG activity used by the model) were extracted for each peak using the formula 
provided by Haufe et al.48:

= Σ Σ ^
−A Wx s

1

where A denotes the pattern, ∑​x represents the covariance of the EEG signal, 
W denotes the weight matrix at the individual time lag and Σŝ represents the 
covariance of the reconstruction.

Spindle and slow-oscillation detection. To investigate the influence of 
NREM-sleep graphoelements (slow oscillations and sleep spindles) on 
stimulus reconstruction, we relied on automated detection algorithms detailed 
elsewhere49–51. To detect slow oscillations, the raw EEG signal was re-referenced 
to the average mastoids. For each sensor, the EEG signal was first filtered between 
0.2 and 3 Hz using a two-pass third-order Butterworth filter and downsampled at 
100 Hz. Peaks and troughs of the filtered signal were detected as zero-crossings of 
the first-order derivative. Portions of signal were determined as slow oscillations 
when a peak and a trough were separated by more than 0.25 s and less than 2 s and 
the trough-to-peak amplitude was greater than 75 µ​V50,51. Here, slow oscillations 
comprised both K-complexes and slow waves. However, slow oscillations detected 
in NREM2 had an asymmetrical profile characteristic of K-complexes and were 
often detected in isolation, whereas slow oscillations detected in NREM3 had a 
more symmetrical profile and tended to occur in trains (Supplementary Fig. 2).  
Thus, NREM2 slow oscillations were approximated to K-complexes and NREM3 
slow oscillations to sleep slow waves. Spindles were also detected using an 
automated algorithm. The raw EEG signal was re-referenced to the mastoids. The 
EEG signal was then band-pass filtered between 11 and 16 Hz with a two-pass 
fourth-order Butterworth filter. The envelope of the signal within the spindle band 
was extracted using the Hilbert transform applied on the filtered signal. Spindle 
candidates were detected as epochs during which a given threshold was overcome. 
The threshold used to identify these candidate spindles was set for each sensor 
and participant separately as the mean +​ 2 s.d. of the envelope amplitude recorded 
during all NREM2 and NREM3 epochs. Spindles candidates longer than 2.5 s or 
shorter than 0.5 s were discarded, as well as spindles during which the envelope 
exceeded a maximal threshold (mean +​ 10 s.d.)49,50.

Decoding around sleep graphoelements. For each detected graphoelement (slow 
oscillations or sleep spindles), we applied the stimulus reconstruction approach 
with time lags between 0 and 250 ms. We extracted the Pearson coefficients 
corresponding to the relevant and Jabberwocky stories on sliding windows (4-s 
long, positioned every 100 ms) around each events onset (−​10 to 10 s; see Fig. 4). 

The central window (t =​ 0) was locked on the negative peak of slow oscillations 
(Fig. 4a–c) and on the middle of spindles (Fig. 4b). K-complexes and spindles 
were detected in NREM2 and slow waves in NREM3. The slow waves and 
spindles were detected on the Cz electrode. Timecourses were averaged within 
participants and only participants with more than 5 detected graphoelements 
were kept for further analyses (n =​ 23, 23 and 15 for K-complexes, spindles and 
slow waves, respectively). Timecourses were then smoothed using a 500-ms-
wide Gaussian kernel for display purpose only (Fig. 4). Statistical tests were 
performed on the data before smoothing. To investigate the effect of slow waves 
on reconstruction scores, we compared the reconstruction timecourse with the 
average reconstruction score in deep sleep. To estimate this average reconstruction 
score, we paired each detected slow-wave onset with a random time point selected 
within the same trial. We computed the reconstruction scores for the relevant and 
Jabberwocky streams around the random time points using a similar procedure 
than for the slow waves (4-s-long sliding window, running from −​10 to +​ 10 s 
around the selected random time points). The reconstruction score around 
random time points was then averaged and removed to the paired timecourse 
around the slow wave.

Statistics. Stimulus reconstruction scores were computed by correlating the 
auditory signal with the EEG signal. Pearson’s method, a parametric assessment 
of the correlation between two signals, was used as in O’Sullivan et al.19. 
Nonparametric statistics were used when comparing reconstruction scores and 
decoding performance across conditions. The use of Wilcoxon signed-rank test, 
which tests hypotheses on the median of two-paired distributions, limits the 
influence of outliers on statistical analyses. In addition, because our data set was 
unbalanced within and across participants as each recording session contains a 
unique combination of wake and sleep trials, we used linear mixed-effect models 
to account for the interaction between predictors on reconstruction scores and 
decoding performance (see Fig. 2). Using chi-squared (χ​²) tests, we estimated the 
significance of fixed effects by comparing a model with only subject identity as a 
random effect and a model with subject identity as a random effect and the variable 
of interest as a fixed effect. We estimated the significance of interactions using  
chi-squared tests by comparing a model with interaction with the same model 
without interaction.

To further confirm that the unbalanced number of trials in light and deep sleep 
did not bias the interaction between story type and sleep stage (see main text and 
Fig. 2b), we investigated this interaction using a bootstrap procedure. We generated 
bootstrapped samples (drawn with replacement) of equivalent size for light and 
deep sleep, repeating this procedure 2,000 times. For each bootstrapped sample, we 
created a permuted sample by randomly permuting trials in light sleep with trials 
in deep sleep. For each bootstrapped and permuted sample, we computed a mixed 
model and extracted the slope of the interaction between type of story and sleep 
stage. We then compared the distributions of the interaction of the bootstrapped 
and permuted samples. We found that the bootstrapped interaction values were 
significantly different from 0 (µ​bootstrap =​ −​1.10 ×​ 10−3, t-test against 0: t(1,999) =​  
−​17.3, P <​ 0.001, d =​ −​0.386, 95% CI =​ 1.226 ×​ 10−3 to 9.761 ×​ 10−4) contrary to 
the one obtained with permuted data sets (µ​permuted =​ 8.38 ×​ 10−5, t-test against 
0: t(1,998) =​ 0.76, P =​ 0.44, d =​ 0.017, 95% CI =​ −​1.324 ×​ 10−4 to 2.999 ×​ 10−4). 
Moreover, the bootstrapped interaction values were significantly different from the 
ones obtained with permutations (µ​bootstrap −​ µ​permuted =​ −​1.18 ×​ 10−3; unpaired, two-
samples t-test: t(3,998) =​ −​9.31, P <​ 0.001, d =​ 0.294, 95% CI =​ −​1.43 ×​ 10−3 to  
−​9.35 ×​ 10−4). These results confirm the presence of a significant interaction 
between story type and sleep stage, even when considering a downsampled  
data set. We visually checked for the normality of the distribution of bootstrapped 
interaction values, but this was not formally tested.

Effect sizes for Wilcoxon signed-rank tests were computed using the formula:

=r Z
n

A 95% CI of the median was generated with bootstrapping using 10,000 
resampling. Effect sizes for t-tests were computed using Cohen’s d (d =​ µ​/σ​; that is, 
the mean divided by s.d.). We used the following format to report statistics: statistic 
(degrees of freedom), P value, effect-size statistic, 95% CIs for t-tests; and statistic, 
P value, effect-size statistic, 95% CIs for Wilcoxon signed-rank tests (degrees of 
freedom are not defined for Wilcoxon tests). All t-tests and Wilcoxon signed-rank 
tests were two sided.

Mixed-model analyses were performed in R (R Development Core Team) with 
the ‘lme4’ and ‘lmerTest’ R packages52,53. Time plots typically include numerous 
data points. To account for the problem of multiple comparisons in timeseries, we 
used nonparametric cluster-permutation statistics54. In this principled approach, 
each cluster was defined as the time points that consecutively passed a specified 
threshold (alpha threshold for cluster selection: α​ =​ 0.1 except for Supplementary 
Fig. 3: α​ =​ 0.15). The sum of the t-values of all of the time points within the 
cluster constituted the cluster statistics. These cluster statistics were compared 
for each cluster with the maximum cluster statistics obtained after the random 
permutations of the conditions examined (n =​ 1,000). From these permutations, 
we computed a Monte-Carlo P value that corresponds to the Pcluster reported in the 
main text and figure legends. To report for the effect size of significant clusters, we 
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computed Cohen’s d (d =​ µ​/σ​; that is, the mean divided by s.d.) by extracting the 
average and s.d. of the average difference over the cluster and across participants. 
To interpret non-significant statistical tests, we computed Bayes factors using the 
‘BayesFactor’ R package. A Bayes factor between 3 and 20 is usually considered as 
positive evidence for the null hypothesis55.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. The code used to perform the analyses of the study is available 
from the corresponding author upon reasonable request.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request.
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